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Solid-body-type vortex solutions
of the Euler equations
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A class of unsteady vortex solutions of the Euler equations is investigated. The
solutions satisfy the von Kármán–Bödewadt similarity scalings and correspond to free
and forced oscillations of radially unbounded solid-body-type vortices with axially
varying rotation rates. The vortices may be of unbounded vertical extent or confined
by impermeable top and/or bottom plates. In the latter case the bounding plates
may be stationary or oscillatory. A solution breakdown result tends to support the
hypothesis that breakdown of viscous Bödewadt-type counter-rotating vortex flows
is an essentially inviscid process.

1. Introduction
The pure solid-body vortex is an exact solution of the steady-state Euler equations

(and Navier–Stokes equations) characterized by a spatially uniform angular velocity.
On the large scale, atmospheres and oceans as a whole tend to rotate with their
planets, that is, as solid bodies. On the small scale, the core regions of separated
vortices and turbulent vortices fall under control of the diffusion process and tend
to rotate as solid bodies (Lugt 1983). A number of vortex solutions of the Navier–
Stokes equations have inner cores in approximate solid-body rotation, for example,
the decaying vortices of Lamb (1945) and Taylor (1918), the convective/diffusive
vortices of Burgers (1948), Rott (1958, 1959), Sullivan (1959) and Bellamy-Knights
(1970, 1971), and the conically similar viscous flows of Long (1958, 1961) and Yih et
al. (1982).

If the strength of a solid-body vortex varies along its rotation axis, the associated
pressure field also varies along the axis and a meridional circulation is induced. Such
is the case with rotating flow over an infinite stationary disk (Bödewadt 1940), an
infinite rotating disk in a fluid otherwise at rest (von Kármán 1921), and flows between
infinite rotating coaxial disks (Batchelor 1951; Stewartson 1953). Axial variations in
angular velocity in these von Kármán–Bödewadt-type flows are a consequence of
no-slip boundary conditions. The induced circulations are such that the radial and
azimuthal velocity components vary linearly with radius, while the vertical velocity
is independent of radius. The same spatial dependences apply to the time-dependent
versions of these flows (Pearson 1965; Bodonyi & Stewartson 1977; Bodonyi 1978).
Steady and unsteady von Kármán–Bödewadt-type flows are reviewed by Zandbergen
& Dijkstra (1987).

More recently, Shapiro & Markowski (1999) and Shapiro (2001) obtained exact un-
steady solutions of the Euler equations for flows satisfying the von Kármán–Bödewadt
velocity scalings. In these inviscid flows, axial variations of angular velocity are pre-
scribed in the initial conditions (since they can no longer arise from the boundary
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conditions). Shapiro & Markowski (1999) considered vertically discontinuous vortices
consisting of piecewise-constant layers of angular velocity. These ‘layered’ solutions
are generally oscillatory, but a singular solution was found for a vertically unbounded
vortex overlying a layer of non-rotating fluid, and a well-behaved monotonic solution
was found for a vertically confined vortex overlying non-rotating fluid. A continuous
solution for an axially propagating centrifugal wave was described by Shapiro (2001).

The present study extends and generalizes the analysis of Shapiro & Markowski
(1999). In § 2 we introduce the von Kármán–Bödewadt velocity scalings and discuss
their consequences for inviscid vortices. In § 3.1 we derive a general closed-form
solution of the Euler equations for a vertically infinite ‘primary vortex’ overlying a
‘boundary layer vortex’ of finite depth and general (continuous or discontinuous)
initial vertical distribution of angular velocity. Also in § 3.1, we obtain a solution
breakdown result for counter-rotating flows. Examples of a singular solution and a
well-behaved solution are presented in § 3.2 and § 3.3, respectively. Several aspects
of the counter-rotating flow breakdown described in § 3.2 are in good agreement
with the breakdown observed in viscous Bödewadt-type counter-rotating vortex flows
(Bodonyi & Stewartson 1977; Bodonyi 1978). Forced oscillations of vertically confined
vortices by the normal motion of an infinite horizontal top plate are examined in
§ 4. A simple solution for a single-layer vortex subjected to general plate forcing is
presented in § 4.1, and a numerical solution for a two-layer vortex forced by a plate
in simple harmonic motion is presented in § 4.2.

2. von Kármán–Bödewadt similarity principle
2.1. Eulerian framework

Our flows satisfy the axisymmetric Euler equations and the incompressibility condi-
tion,
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Here u, v and w are the radial (r), azimuthal (φ) and vertical (z) velocity components,
respectively, ρ is the (constant) density and p is the perturbation pressure (pressure
minus hydrostatic pressure).

The initial state consists of a solid-body vortex with axially varying angular velocity,
a radial velocity that varies linearly with radius and, in view of (4), a vertical
velocity that is independent of radius. Inspection of (1)–(4) shows that these spatial
dependences persist, that is, the flows satisfy the von Kármán–Bödewadt similarity
relations,

u = r F(z, t), v = r Ω(z, t), w = H(z, t), (5)

with

F = −1
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. (6)
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Accordingly, the vertical velocity, horizontal divergence δ (= ∂u/∂r+ u/r = −∂H/∂z)
and vertical vorticity ζ (= ∂v/∂r + v/r = 2Ω) are all independent of radius.

Equations (5) and (6) reduce (1)–(3) to simpler forms,
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An azimuthal vorticity equation is obtained by cross-differentiating (7) and (9) to
eliminate p,
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It will be convenient later to consider a rewritten form of (10) and an integrated form
of (10):
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where C(t) is a function of integration. The pressure field is obtained from (7), (9)
and (12) as

p = ps − ρ
∫ z
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where zb is a lower reference surface, for example a stationary plate or a plate moving
with speed żb (we use a dot to denote total differentiation on a boundary), and ps is a
stagnation pressure. In view of (13), the radial pressure gradient force is independent
of height and equal to −C(t) r/2.

We seek an expression for C(t) for the general case where both top (zt) and bottom
(zb) plates may be present (and possibly in vertical motion). Integrating (12) from zb
to zt, we obtain

C(t) =
1

zt − zb
[
z̈t − z̈b +

∫ zt
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(2Ω2 − 3δ2/2) dz

]
. (14)

Thus our problem reduces to solving two coupled partial differential equations,
(8) and (11), or, equivalently, (8) and the integro-differential equation arising from
applying (14) in (12).

2.2. Lagrangian framework

In the Lagrangian framework, we regard z = z(t, z0) as a dependent variable, and
t and the initial height z0 = z(0, z0) as independent variables. Accordingly, we are
concerned with the motion of horizontal material surfaces. The Lagrangian framework
simplifies the analysis and leads to a closed-form solution for the special case where
C is constant (see § 3).

Introducing the total derivative operator, d/dt = ∂/∂t+H ∂/∂z, we can write (12)
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and (8) as

dδ/dt+ δ2/2− 2Ω2 = −C(t), (15)

dΩ/dt = −Ωδ. (16)

Equations (15) and (16) are (19) and (18) in Shapiro & Markowski (1999) but now
valid for a continuum, not just for discrete fluid layers of piecewise-constant angular
velocity and divergence.

It will be convenient to work with a new dependent variable φ defined by

φ = |Ω|−1/2, (17)

or |Ω| = 1/φ2. In view of (16), δ is related to φ by

δ = (2/φ) dφ/dt. (18)

It also follows from (16) that Ω(t, z0) = Ω(0, z0) exp (− ∫ t
0
δ(t′, z0) dt′), and thus the

sense of rotation of a material surface does not change. Applying (17) and (18) in
(15) yields

d2φ/dt2 − φ−3 = − 1
2
C(t)φ. (19)

To obtain the vertical ‘stretching’ experienced by adjacent horizontal material
surfaces, first integrate dz/dt = H to obtain the height of a horizontal material
surface z = z(t, z0),
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∫ t

0
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Next, differentiate (20) with respect to z0, and use ∂H/∂z0 = (∂H/∂z)(∂z/∂z0) =
−δ ∂z/∂z0 to obtain

∂z

∂z0

= 1−
∫ t

0

δ(t′, z0)
∂z

∂z0

dt′. (21)

Taking the total derivative of (21) yields

(d/dt)(∂z/∂z0) = −δ ∂z/∂z0. (22)

Applying (18) in (22), integrating, and using the fact that ∂z/∂z0(0, z0) = 1, we get
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0/φ

2, (23)

where φ0 ≡ φ(0, z0) (more generally, a subscript 0 on any dependent variable denotes
the initial value of that variable). Applying (17) in (23) (and using the fact that
|Ω|/|Ω0| = Ω/Ω0) yields

∂z/∂z0 = Ω/Ω0. (24)

The quantity ∂z/∂z0 is the spacing ∆z between two horizontal material surfaces
normalized by their initial spacing ∆z0 evaluated locally, that is, in the limit ∆z0 → 0.
Thus, a value of ∂z/∂z0 > 1 indicates that neighbouring horizontal material surfaces
have been stretched from their initial configuration. According to (24), the ratio of
vertical vorticity Ω to ‘thickness’ ∆z is invariant (in the limit ∆z0 → 0). We thus
regard (24) as an equation for potential vorticity conservation.

Integrating (24) with respect to z0 yields z as

z(t, z0) = zb(t) +

∫ z0

zb(0)

Ω(t, z′0)
Ω0′

dz′0, (25)

where Ω0′ ≡ Ω(0, z′0) defines the subscript 0′ dummy notation.
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To obtain the vertical velocity, take the total derivative of (25) and apply (16),
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A single integro-differential equation for φ results from applying (17), (18) and (27)
in (19),
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Finally, we derive a conservation principle for the (squared) meridional vorticity
components. Writing (11) as 1
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Multiplying the vertical derivative of (8) by ∂Ω/∂z and rearranging yields
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Adding (29) to (30) yields (d/dt)[ 1
4
(∂δ/∂z)2 + (∂Ω/∂z)2] = 0, which integrates to

1
4
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In terms of the meridional vorticity components (radial vorticity ξ = −∂v/∂z =
−r ∂Ω/∂z and azimuthal vorticity η = ∂u/∂z = r/2 ∂δ/∂z), (31) becomes

η2 + ξ2 = r2B(z0). (32)

3. Closed-form solution for boundary-layer-type vortices
3.1. General solution

We now examine the special case of an upper ‘primary vortex’ overlying a lower
‘boundary-layer vortex’. The lower vortex is considered to have a finite vertical
thickness and an arbitrary continuous or discontinuous initial vertical profile of
divergence and angular velocity. It is considered to be bounded from below by an
impermeable plate that may or may not be stationary, and bounded from above by
the upper vortex. The upper vortex is assumed to be (i) of infinite vertical extent
(zt = ∞), (ii) non-divergent, and (iii) in solid-body rotation with spatially constant
angular velocity (say, Ω̄). Without loss of generality we assume that Ω̄ > 0. It can
readily be shown that these conditions persist for all time, and therefore C (= 2Ω̄2) is
also temporally constant. In view of (13) and the constancy of C , the radial pressure
gradient force is independent of z and t. We use the designation ‘boundary-layer
vortex’ for the lower vortex because of its relative shallowness (the ratio of lower
vortex thickness to upper vortex thickness is zero) and the fact that the radial pressure
gradient force in the upper flow is impressed upon the lower flow, as in conventional
boundary layer theory (Schlichting 1979).
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It should be noted that vortices confined by both top and bottom plates are
generally associated with a temporally varying C , even when both plates are stationary.
Perhaps the simplest example of this is a two-layer flow (vortex overlying non-rotating
fluid) confined between stationary plates, described in § 4.d of Shapiro & Markowski
(1999). Using the data provided in figure 3 of that paper we see that C is non-zero
initially but approaches the steady-state value of zero as t → ∞. It should also be
noted that not all constant-C flows are of boundary-layer type. For example, the
axially propagating centrifugal wave solution of Shapiro (2001) is associated with a
constant C (twice the difference between the (squared) base state and disturbance
angular velocities) but would probably not be regarded as a boundary-layer-type flow.

As we will now see, the condition that C = 2Ω̄2 leads to a closed-form solution
of (19) for arbitrary initial profiles of boundary layer vortex divergence and angular
velocity. Changing the dependent variable to P (≡ dφ/dt) and regarding φ as a new
independent variable, (19) becomes dP 2/dφ = 2φ−3 − 2Ω̄2φ. Integrating and taking
the square root, we obtain

dφ/dt = ±
√
−φ−2 − Ω̄2φ2 + 2Ω̄D0. (33)

Here 2Ω̄ D0 is a constant of integration, the factor 2Ω̄ introduced for later convenience.
D0 can be related to the initial conditions by applying (17) and (18) in (33) at the
initial time,
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In view of (17) and (18) (and the fact that |Ω|/|Ω0| = Ω/Ω0), the divergence and
angular velocity are given by
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Equations (25) and (26) then yield the height and vertical velocity as
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H = żb(t)−
∫ z0

zb(0)
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Although analytic evaluation of (39) and (40) will be possible only for the simplest
profiles of divergence and angular velocity, some general observations can be made.
According to (34), D0 = 1 for any horizontal material surface on which the initial
divergence is zero and the initial angular velocity has the same magnitude as the
angular velocity in the primary vortex (Ω0 = ±Ω̄). Such a surface remains non-
divergent with Ω = ±Ω̄ for all time. However, (39) and (40) show that the height
and vertical velocity of that surface depend on the initial vorticity and divergence
distributions beneath it, and are generally oscillatory with a period π/Ω̄ equal to half
the orbital period of fluid elements in the primary vortex. For a horizontal material
surface on which D0 6= 1, the divergence and azimuthal velocities of that surface are
also oscillatory with period π/Ω̄.

We also note that a forced oscillation of the lower boundary in the otherwise
unbounded flow merely supports en masse lifting of the fluid. In contrast, forced
motion by one horizontal boundary plate of a vortex confined at both the top and
bottom is associated with a variable C(t) and a more complicated motion (see § 4).

The analytic solution leads to a simple breakdown result. If a horizontal material
surface has zero initial angular velocity (Ω0 = 0), D0 is infinite and (38) shows that the
angular velocity of that surface remains zero for all time (a result that could also have
been deduced from (16)). However, in view of (37), the divergence on that surface,
δ = 2Ω̄ cos (2Ω̄t+ A0)/[1 + sin (2Ω̄t+ A0)], becomes singular (denominator vanishes)
within half the orbital period of the primary vortex (t < π/Ω̄). This means that any
counter-rotating flow with a vertically continuous angular velocity distribution (that
is, a counter-rotating flow containing a layer of non-rotating fluid) will blow up. If
the initial divergence is zero, breakdown occurs at t = π/(2Ω̄).

Solution breakdown can be traced to the presence of the δ2 term in (15), which
in turn can be traced to the radial advection term u ∂u/∂r in the radial equation
of motion (1). Equation (15) with Ω = 0 is a Ricatti equation whose solution (with
C = 2Ω̄2 > 0) blows up in a finite time. If the δ2 term were replaced by a linear term,
the corresponding solution would not be singular. Physically, breakdown is due to
the maintained impressing of the radial vortex pressure gradient force on a layer of
non-rotating fluid. The radial acceleration sustained by this pressure gradient force
eventually leads to singular radial convergence. In contrast, even a small initial value
of angular velocity precludes a singularity in radial convergence. This is because the
imbalance between the pressure gradient force and centrifugal force is reduced (and
actually reverses) as the angular velocity spins up in the convergent inflow.

An example of solution breakdown was discussed in Shapiro & Markowski (1999)
for a vertically discontinuous two-layer flow consisting of a primary vortex overlying
a finite layer of non-rotating fluid. Breakdown of the solution of the von Kármán–
Bödewadt similarity equations has also been described by Bodonyi & Stewartson
(1977) and Bodonyi (1978) for viscous counter-rotating vortex flow. These two studies
were concerned with the development of an unsteady viscous boundary layer on an
infinite rotating disk in a rotating fluid. The boundary layer was created by suddenly
reversing the sense of disk rotation, an action that induced counter-rotating flow
adjacent to the disk and ensured the existence of a level of non-rotating fluid.

Breakdown of the Navier–Stokes equations also occurs in a class of Burgers-type
vortex flows (Gibbon, Fokas & Doering 1999) in which the straining velocity field
varies linearly with distance (as in the von Kármán–Bödewadt scaling) but with no
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such restriction on the rotational velocity component. The straining velocity in these
Burgers-type flows mediates a balance between vorticity advection, stretching and
diffusion, and results in a concentrated ‘columnar’ vortex that decays with radius in
the limit of large radius. Solution breakdown is associated with a positive value of
∂2p/∂z2, which appears as a spatially uniform coefficient in a Riccati equation for
the strain rate (a positive value of ∂2p/∂z2 would force an axial downflow, that is, a
‘down-and-out’ meridional circulation known to be inconsistent with a well-behaved
Burgers model (Burgers 1948; Rott 1958)). In our present study, solution breakdown
for Ω = 0 on a material surface is associated with a positive spatially uniform
coefficient C (= 2Ω̄2) in the Riccati equation for the vertical strain rate (equation (15)
with Ω = 0). The Riccati equations in the two investigations are formally identical,
although our coefficient C is a measure of ∂2p/∂r2, rather than of ∂2p/∂z2.

3.2. An example illustrating solution breakdown

Consider an initially non-divergent boundary-layer vortex in which the initial angu-
lar velocity varies linearly with height from Ωs0 at the stationary lower boundary
(zb(t) = 0) to Ω̄ at the top of the boundary layer zh (base of the primary vortex),
that is

δ0 = 0, 0 6 z0 < ∞,
Ω0 = Ω̄[(1− µ)z0/zh + µ], 0 6 z0 6 zh

= Ω̄, zh < z0 < ∞,

 (41)

where µ ≡ Ωs0/Ω̄. We are particularly interested in the case where the fluid at the
plate rotates in a sense opposite that of the fluid in the primary vortex (µ < 0), a state
that is qualitatively similar to the boundary layer that develops in a rotating viscous
fluid shortly after a lower infinite disk has been forced to counter-rotate (Bodonyi
& Stewartson 1977; Bodonyi 1978). In our case, a non-rotating material surface is
present within the inviscid boundary layer at the initial height z∗0 ≡ −µzh/(1 − µ).
Since there is no rotation on the z∗0 material surface, and the initial divergence is
zero, the solution should blow up at t = π/(2Ω̄). As we will see, the nature of the
breakdown in this counter-rotating flow is quite unusual.

Expanding the sine and cosine terms in (37) and (38) with addition formulas, and
then applying (36b) and (36c) wherever possible leads to

Ω =
2Ω̄µ(1− z0/z

∗
0)

1 + µ2(1− z0/z
∗
0)2 + [1− µ2(1− z0/z

∗
0)2] cos 2Ω̄t

, 0 6 z0 6 zh

= Ω̄, zh < z0 < ∞, (42)

δ =
−2Ω̄[1− µ2(1− z0/z

∗
0)2] sin 2Ω̄t

1 + µ2(1− z0/z
∗
0)2 + [1− µ2(1− z0/z

∗
0)2] cos 2Ω̄t

, 0 6 z0 6 zh

= 0, zh < z0 < ∞, (43)

while (39) is evaluated as

z = 2zh
tan−1[µ(1− z0/z

∗
0) tan Ω̄t]− tan−1(µ tan Ω̄t)

(1− µ) sin 2Ω̄t
, 0 6 z0 6 zh

= z0 − zh + T1(t), zh < z0 < ∞. (44)
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The depth of the boundary layer vortex T1(t) is obtained by setting z0 = zh in the
first part of (44),

T1(t) = 2zh
Ω̄t− tan−1(µ tan Ω̄t)

(1− µ) sin 2Ω̄t
, for t < π/(2Ω̄). (45)

Equations (42)–(44) are a parametric form of the solution (with z0 as a parameter).
To obtain the Eulerian solution, solve (44) for z0,

z0 = z∗0 − z∗0
µ tan Ω̄t

tan

[
(1− µ)z

2zh
sin 2Ω̄t+ tan−1(µ tan Ω̄t)

]
, z 6 T1(t)

= z + zh − T1(t), z > T1(t), (46)

and use (46) to eliminate z0 in favour of z and t in (42) and (43).
Inspection of (43) shows that δ(t, z0) → 0 as t → π/(2Ω̄) for all z0, with the

possible exception of the non-rotating material surface z∗0 where both the numerator
and denominator of δ vanish. Further analysis shows that δ(t, z∗0) = −2Ω̄ tan Ω̄t, so
δ(t, z∗0)→ −∞ as t→ π/(2Ω̄). Thus, there is infinite convergence (radial inflow) along
the non-rotating material surface z∗0 .

Equation (43) also shows that for all times prior to the onset of the singularity
(t < π/(2Ω̄)), δ has the same sign as −2Ω̄[1− µ2(1− z0/z

∗
0)2] (since the denominator

in (43) is positive, and sin 2Ω̄t is positive for t < π/(2Ω̄)). For µ in the ‘weak’ counter-
rotation regime −1 < µ < 0, it can readily be shown that 1− µ2(1− z0/z

∗
0)2 > 0, and

so there is radial convergence (δ < 0) and rising motion throughout the boundary
layer. For µ in the ‘strong’ counter-rotation regime µ < −1, we can identify a material
surface zδ ≡ z∗0(1 − 1/|µ|) on which the divergence is zero. The flow is divergent
beneath this surface (δ > 0 for 0 6 z0 < zδ), and convergent above it (δ < 0 for
zδ < z0 6 zh). The non-divergent surface zδ is characterized by an angular velocity
that is equal and opposite to the angular velocity in the primary vortex, Ω(t, zδ) = −Ω̄.
It is easily seen that such a material surface is consistent with (15) and (16).

Equation (44) shows that the denominator of z vanishes as t → π/(2Ω̄), but
the behavior of the numerator is obscured by the presence of two tan−1 functions.
The arguments of these functions are each proportional to tan Ω̄t, and thus become
unbounded as t → π/(2Ω̄). For µ < 0 and t slightly less than π/(2Ω̄), the argument
of the first tan−1 function is positive for z0 > z∗0 and negative for z0 < z∗0 , while
the argument of the second tan−1 function is negative. Since tan−1 χ behaves like
π/2− 1/χ for large positive χ, and like −π/2− 1/χ for large negative χ (Dwight 1961,
equations (505.2) and (505.3)), we find that

lim
t→π/(2Ω̄)

z =
z0

µ2(1− z0/z
∗
0)
, 0 6 z0 < z∗0

= ∞, z∗0 6 z0 < ∞. (47)

The extension of the inequality in (47) to ∞ follows from the fact that the boundary-
layer thickness T1 becomes singular.

Taking the time derivative of (45), and examining the result for t near π/(2Ω̄), we
see that the normal velocity of the top of the boundary layer just prior to blow-up
behaves as

dT1

dt
≈ πzhΩ̄

(1− µ) cos2 Ω̄t
≈ πzhΩ̄

1− µ (π/2− Ω̄t)−2, for t near π/(2Ω̄). (48)
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Equation (42) describes a discontinuous blow-up of the angular velocity Ω near z∗0:

lim
t→π/(2Ω̄)

Ω =
Ω̄

µ(1− z0/z
∗
0)
< 0, 0 6 z0 < z∗0

= 0, z0 = z∗0

=
Ω̄

µ(1− z0/z
∗
0)
> 0, z∗0 < z0 6 zh

= Ω̄, zh < z0 < ∞. (49)

This angular velocity distribution has a simple physical interpretation. Since Ω is
originally zero on the z∗0 material surface, it must remain zero. But the initially
small values of Ω immediately adjacent to this surface spin up to infinite values in a
convergent inflow that is singular on the z∗0 surface. Since Ω was originally positive just
above the non-rotating surface, it becomes infinite through positive values. Similarly,
immediately beneath the non-rotating surface, Ω becomes infinite through negative
values.

Our breakdown results tend to support Bodonyi & Stewartson’s (1977) hypothesis
that breakdown of viscous counter-rotating flow is largely due to inviscid processes.
The time of the inviscid breakdown, t = π/(2Ω̄) ≈ 1.571/Ω̄, is in good agreement with
the viscous breakdown time, t ≈ 2.365/Ω̄ . The violence of the inviscid breakdown is
also similar to that reported in Bodonyi & Stewartson (1977), where all the velocity
components become infinite. Of particular note, the normal velocity at the top of
the boundary layer just prior to breakdown in both viscous and inviscid flows is
proportional to (tE − Ω̄t)−2, where tE is the breakdown time (compare (48) to (2.5) of
Bodonyi & Stewartson).

Although our focus in this section has been on the solution breakdown attending
counter-rotating flow (µ < 0), we note that (42)–(44) is well behaved if attention is
restricted to strictly positive angular velocity profiles (µ > 0). In that case z∗0 does
not lie within the boundary layer, and the denominators of δ and Ω never vanish.
Although the denominator of z still vanishes, the numerator of z vanishes in such
a manner that z remains finite. This well-behaved solution is similar to the example
considered in the next section.

3.3. An example of a well-behaved solution

Next consider an initially non-divergent vortex in which the initial angular velocity
varies exponentially from the lower boundary up to the base of the primary vortex,

δ0 = 0, 0 6 z0 < ∞,
Ω0 = Ω̄ exp (z0/zh − 1), 0 6 z0 6 zh

= Ω̄, zh < z0 < ∞.

 (50)

Evaluation of (37) and (38) yields the angular velocity and divergence as

Ω = Ω̄
1

cosh (1− z0/zh) + sinh (1− z0/zh) cos 2Ω̄t
, 0 6 z0 6 zh

= Ω̄, zh < z0 < ∞, (51)
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δ = −2Ω̄
sin 2Ω̄t

coth(1− z0/zh) + cos 2Ω̄t
, 0 6 z0 6 zh

= 0, zh < z0 < ∞, (52)

and evaluation of (39) yields

z =
zh

2
sec2 Ω̄t ln

[
tan2 Ω̄t+ e2

tan2 Ω̄t+ exp [2(1− z0/zh)]

]
, 0 6 z0 6 zh

= z0 − zh + T1(t), zh < z0 < ∞, (53)

where the depth of the boundary layer vortex is T1(t) = 1
2
zh sec2 Ω̄t ln[1 + (e2 −

1) cos2 Ω̄t]. It can readily be verified that these expressions are always bounded.
To obtain the Eulerian solution, invert (53) to obtain an explicit formula for z0,

z0 = zh − 1
2
zh ln[(tan2 Ω̄t+ e2) exp (−2 cos2 Ω̄t z/zh)− tan2 Ω̄t], z 6 T1(t)

= z + zh − T1(t), T1(t) < z, (54)

and substitute this form in (51) and (52). This solution is displayed in figure 1.
The flow consists of a centrifugally driven ‘sloshing’ motion in the vertical, with
compensating low-level radial inflow and outflow. As the convergence in the lower
vortex oscillates between peak positive and negative values, the stretching process
forces the vorticity to alternately amplify and attenuate.

4. Solutions for variable C(t): vertically confined vortex forced by top plate
4.1. Uniform angular velocity and divergence

Now consider the special case of a vortex of initially uniform angular velocity and
divergence confined between two impermeable horizontal plates. The lower plate is
stationary and the top plate undergoes an arbitrary vertical acceleration. The initial
divergence must be chosen to be consistent with this top plate motion. In view of the
meridional vorticity conservation equation (31), the initial uniform conditions for δ
and Ω ensure that δ and Ω remain uniform for all time.

With the plate motion specified by

zb(t) = 0, zt(t) = f(t), (55)

and the initial conditions given by

Ω(0, z) = Ω̄, δ(0, z) = −ḟ(0)/f(0), (56)

the vertical velocity, divergence and angular velocity fields are readily obtained as

H = zḟ(t)/f(t), δ = −ḟ(t)/f(t), Ω = Ω̄f(t)/f(0). (57)

For completeness we note that C(t) can be evaluated as

C(t) = f̈/f + 2Ω̄2f2/f2(0)− 3
2
ḟ2/f2. (58)

4.2. Two-layer vortex

Now consider a two-layer vortex in which the initial angular velocity and divergence
are uniform in each layer and the bounding plates satisfy (55). In view of (31), δ and
Ω remain uniform in each layer for all time. We denote the angular velocities in the
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Figure 1. Contour plots of (a) angular velocity Ω/Ω̄ and (b) divergence δ/Ω̄ for a vortex with initial
conditions specified in (50). Angular velocity increases with height from a stationary lower plate up
to the base z = T1(t) of a uniformly rotating primary vortex. All quantities are non-dimensional.
Contour increment in (a) and (b) is 0.25. Negative contours are dashed.

lower and upper layers by Ω1(t) and Ω2(t), respectively. The layer divergences δ1(t)
and δ2(t) are defined analogously.

Following the approach of Shapiro & Markowski (1999) (for stationary plates) we
obtain

Ω1(t) =
Ω1(0)

T1(0)
T1(t), Ω2(t) =

Ω2(0)

f(0)− T1(0)
(f(t)− T1(t)), (59a, b)

δ1 = − 1

T1

dT1

dt
, δ2 =

1

f − T1

(
dT1

dt
− ḟ
)
, (60a, b)

where T1 is the height of the interface between the two layers. Applying these
expressions in (15) for each layer, and then subtracting one equation from the other
yields a second-order nonlinear ordinary differential equation

d2T1

dt2
+

3

2

(
1

f − T1

− 1

T1

)(
dT1

dt

)2

− 2

(
Ω2(0)

f(0)− T1(0)

)2
T1

f
(f − T1)

3

+ 2

(
Ω1(0)

T1(0)

)2(
1− T1

f

)
T 3

1 +
3

2

T1

f − T1

ḟ

f

(
ḟ − 2

dT1

dt

)
− T1

f
f̈ = 0. (61)

The initial value problem consists of solving (61) with specified f(t), and initial
data T1(0), dT1/dt(0), Ω1(0) and Ω2(0). The initial value dT1/dt(0) can be specified in
terms of the divergences in either layer via (60a) or (60b). However, just as the initial
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Figure 2. Evolution of a two-layer vortex forced by a vertical oscillation of the top plate with
sub-inertial frequency ω = 0.015 s−1: (a) interface height T1(t)/h (lower curve) and top plate
height f(t)/h (top curve); (b) lower-layer angular velocity Ω1(t)/Ω1(0) (solid curve) and upper-layer
angular velocity Ω2(t)/Ω2(0) (dashed curve); (c) lower-layer divergence δ1(t)/δ1(0) (solid curve) and
upper-layer divergence δ2(t)/δ2(0) (dashed curve).

divergence in the single-layer example could not be chosen arbitrarily, δ1(0) and δ2(0)
in the two-layer vortex cannot be chosen independently of each other. Elimination of
dT1/dt from (60a) and (60b) yields

δ2 = − T1

f − T1

(δ1 + ḟ/T1). (62)

The initial conditions must be consistent with this condition.
In the case where the top plate is stationary (so f(t) = h, a constant), (61)

is autonomous and can be solved analytically (Shapiro & Markowski 1999). This
unforced (inertial) solution is found to be periodic with natural frequency

ωnat = 2

(
1− T1(0)/h

|Ω2(0)| +
T1(0)/h

|Ω1(0)|
)−1

= 2h

(∫ h

0

1

|Ω(z, 0)| dz
)−1

. (63)
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Figure 3. As figure 2 but for the natural frequency ω = ωnat = 0.048 s−1.

Equation (24) can be used to show that (63) remains valid if we replace Ω(z, 0)
by Ω(z, t), that is, ωnat is independent of the time at which the angular velocity is
evaluated. Since the orbital period of a fluid parcel (layer) with angular velocity Ω is
2π/Ω, the natural period of oscillation, 2π/ωnat, is half the mean orbital period of the
vortex. For a non-stationary plate we will appeal to numerical methods of solution
and present results for a length of time of a fixed number of the corresponding
natural periods of oscillation.

Now consider the evolution of a two-layer vortex forced by a top plate oscillation
of the form f(t) = h(1− α sinωt). With attention restricted to initial layer thicknesses
and divergences that are the same in each layer, we find that T1(0) = h/2, δ1(0) =
δ2(0) = αω, and dT1/dt(0) = −αωh/2. We fix the oscillation amplitude at α = 0.4
and set the initial angular velocities in the lower and upper layers to Ω1(0) = 0.02 s−1

and Ω2(0) = 0.03 s−1, respectively. The corresponding natural (inertial) frequency is
obtained from (63) as ωnat = 0.048 s−1 (this is the frequency that would be exhibited
by the two-layer vortex if the top plate were stationary). The solution of this forced
problem is obtained by breaking (61) into two first-order equations that are then
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Figure 4. As figure 2 but for a super-inertial frequency ω = 0.07 s−1.

integrated with a standard fourth-order Runge–Kutta method (Press et al. 1992, § 16.l).
The integration proceeds for 1047.2 s (eight periods of the corresponding natural
oscillation) with a time-step size of ∆t = 0.5236 s. We present results for a sub-inertial
frequency of ω = 0.015 s−1 (figure 2), the natural frequency ω = ωnat = 0.048 s−1

(figure 3), and a super-inertial frequency of ω = 0.07 s−1 (figure 4). For comparison,
the corresponding stationary plate case is displayed in figure 5. Although the solutions
are generally oscillatory with several frequencies present, no solutions were found
with irregular or broadband structures characteristic of chaos. Forcing at the natural
frequency here and in experiments with other parameter choices (not shown) failed
to elicit resonance.

5. Summary remarks
We consider the class of radially unbounded solid-body-type vortices in which the

angular velocity varies along the rotation axis. The flows are assumed to be inviscid
incompressible and axisymmetric. The von Kármán–Bödewadt velocity scalings apply
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Figure 5. As figure 2 but for the unforced vortex. In (a) the top plate is stationary at z/h = 1, and
the interface height T1(t)/h is oscillatory. Plotting scales are the same as in figures 2–4.

to this flow class and lead to exact solutions of the Euler equations for several
scenarios. In particular, a general closed-form solution is obtained for a vertically
infinite vortex of uniform angular velocity overlying a bounded vortex (bounded from
below by a horizontal plate) with a variable angular velocity distribution. Although
such a flow is generally oscillatory, the solution blows up in a finite time (less than
half the orbital period of the primary vortex) if the fluid at any level is not rotating.
The example considered in § 3.2 tends to support Bodonyi & Stewartson’s (1977)
hypothesis that breakdown of viscous Bödewadt-type counter-rotating vortex flows
over a rotating disk may be largely inviscid in nature.

Provision is also made for boundary forcing from vertically oscillating horizontal
plates. The solution for a vertically confined single-layer (uniform) vortex forced by
the motion of the top plate is extremely simple and is dominated by the form of the
boundary forcing (vertical vorticity is proportional to boundary displacement f(t)).
Numerical solutions are presented for a vertically confined two-layer vortex forced
by a top plate in simple harmonic motion. These latter solutions do not appear to be
chaotic.

The stability of these solutions has not been explored. If general perturbations are
considered (perturbations unconstrained by the similarity relations), shear instabilities
would be anticipated to develop in some cases; however, the question of stability is
beyond the scope of the present investigation.

The author is grateful to Douglas Lilly for helpful discussions and for commenting
on an earlier draft of this paper. The comments of the anonymous referees are also
gratefully acknowledged. Figures were prepared with ZXPLOT graphics software
developed by Ming Xue.
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